
Next generation debuggers
for reverse engineering

Julien Vanegue1, Thomas Garnier2, Julio Auto3,
Sebastien Roy4, Rafal Lesniak5

1 Master Parisien de Recherche en Informatique
vanegue@ens.fr

2 Ecole Superieure d’Informatique
thomas.garnier@supinfo.com

3 Federal University of Pernambuco
jam@cin.ufpe.br

4 Devhell Labs.
ceb@devhell.org

5 Leibniz University of Hannover
rafal.lesniak@stud.uni-hannover.de

Abstract. Classical debuggers make use of an interface provided by the
operating system in order to access the memory of programs while they
execute. As this model is dominating in the industry and the community,
we show that our novel embedded architecture is more adapted when de-
buggee systems are hostile and protected at the operating system level.
This alternative modelization is also more performant as the debugger
executes from inside the debuggee program and can read the memory
of the host process directly. We give detailed information about how
to keep memory unintrusiveness using a new technique called allocation
proxying. We reveal how we developed the organization of our multiarchi-
tecture framework and its multiple modules so that they allow for graph-
based binary code analysis, ad-hoc typing, compositional fingerprinting,
program instrumentation, real-time tracing, multithread debugging and
general hooking of systems. We reveal the reflective essence of our frame-
work by embedding its internal structures in our own reverse engineering
language, thus recalling concepts of aspect oriented programming.

1 Introduction

As general purpose debuggers do a very good job in debugging our development
projects, it is difficult to understand how to improve such environments for
programming purposes. Some debuggers [2] are even so portable that we clearly
do not catch at first sight what is to be improved in the concept itself of being
a debugger, as the software seems so adaptable.

2

1.1 Limitations of classical debuggers

The first point we should notice about debuggers is the shape of their modeliza-
tion, which is adapted for development but not for reverse engineering. Espe-
cially, both forensic analysis and advanced machine code analysis are required
for the analysis of malwares, protected software, and the control of systems in
hostile configurations.

Encrypted binaries, rootkits and malwares are often coming without section
table information, without symbols, and are compiled statically so that the pro-
gram cannot be debugged through the interactions it has with other component
libraries. Well often they are encrypted, so it is necessary to retrieve their mem-
ory image while being executed instead of trying to perform a static analysis on
the binary file.

Constrained systems with hostile configurations can be realized using ACL
systems and non-execution protections such as PaX and grsecurity [3], and spe-
cial linking in position independant executables in order to make the address
space layout randomization easier to the protected system. Other variants of
this protection is provided in OpenBSD and involve the same limitations while
trying to use a classic debugging tool. Sometimes the system even comes with
no debugging interface (like in embedded systems without usable JTAG), or the
debugging interface may be simply disabled (as when a production system has
the ptrace syscall disabled).

Additionally, the use of the classic debugging API usually involves heavy
communications between the debugger and the debuggee process. While this is
not a problem when doing development debugging, more elaborated analysis
techniques such as tracing or fuzzy testing requires more fluidity, as existing
tools [4] [5] really lack a more real-time answer.

Finally, classic debuggers make the assumption that source code is available
most of the time and they don’t take advantage of internal binary format in-
formation. The most basic reverse engineering is made harsh on raw assembly
code without code analysis techniques, fingerprinting primitives, and the lack
of a language adapted to the discovery of information in raw disk or memory
dumps.

1.2 Advantages of our framework

Our debugger is made for reverse engineers on the ELF format. While the global
architecture does not implies a scope limited to one binary format, we have
focused on the standard used on almost all Operating Systems (both free and
commercial), except Microsoft Windows and the OsX from Apple. Our choice
of the ELF format has been historically to fill the gap between the analysis
software already available on those commercial OS’s, and the poor playground

3

of the UNIX world, after the remark that an hegemony of GNU tools for those
OS’s would not adapt to reverse engineering.

The ELF shell project [1] started 6 years ago and implemented an inter-
active and scriptable machine for manipulation of on-disk ELF binaries. After
some first insights in this binary format, we implemented novel techniques for
program analysis only using on-disk modifications [7]. At this time, malwares
for UNIX were quite primitive and protections on top of ELF files were almost
absent, despite the release of burneye [8] binary encryptor, following the way of
the UPX packer [9]. Our platform was already compatible with PaX systems for
multiple architectures and we succesfully instrumented a wide amount of binary
programs for auditing and hooking purposes.

After experiments in the real world, we concluded that control over analyzed
binaries was insuficient, and adding runtime capable analysis, among other ad-
ditional improvements such as different types of control flow redirections, and
partial relinking of missing resources on both dynamic and static binaries [10]
had become necessary. We managed to reuse our whole API using an inspired
abstraction of data accesses for selecting source and destination buffers, depend-
ing on the choice of on-disk or in-memory requests. We also added at that time
the first support of major techniques for other architectures such as ALPHA
or MIPS, and improved the scripting langage to make it nearer a real reverse
engineering oriented interpreter.

Today, we bring one more layer of techniques for more advanced handling of
the mentioned problematic systems. Our framework is more intuitive to use in
the everyday life of reverse engineers and forensic analysts on UNIX platforms.
Our internal representations have been formalized to a type system adapted for
the inference of information, using a lazy way to abstract and concretize data
object types as we need to manipulate them, that make the interpreted language
more flexible to the addition of features of interactions. We standardize our re-
constructed information into a debugging format which can also benefit from
the information of other debugging formats like DWARF or STABS, if those are
available in analyzed binaries by any chance. The debugger has become com-
patible with multithreaded programs and also keep memory unintrusiveness by
proxying all allocations and disallocations happening in the debuggee. Thus, we
provide a real world debugging environment for hostile systems which does not
suffer from performance penalties due to the use of debug interfaces provided by
the Operating System.

2 Contributions

The ERESI framework [6] brings a new environment for reverse engineering on
UNIX operating systems. In this section we will introduce it with a high-level

4

perspective. In the next parts, we will enter more and more in details about
each component, starting with in-depth explanations of the used programming
techniques that made it possible.

2.1 A modular framework for reverse engineering

The organization of the project is as follow :

Fig. 1. The framework model

5

Let’s understand this better, starting from the highest level components to
the lowest level components :

– e2dbg stands for the Embedded ELF debugger. It can hook processes with-
out the need of OS-level debugging API.

– etrace stands for the Embedded ELF tracer. It can trace processes at the
normal execution frequency.

– elfsh stands for the ELF shell. This is the ondisk analysis tool of the frame-
work.

– librevm is the template ERESI interpreter. It provides a small virtual ma-
chine for the ERESI language, the first reverse engineering language with
types and reflection.

– libmjollnir is the fingerprinting and analysis library. It handles the construc-
tion of graphs using generic containers data structures.

– libedfmt is the library that deal with the ERESI debug format. It can con-
vert stabs and dwarf formats to the eresi format, and make the framework
aware of program types as indicated by debug information.

– libelfsh is the binary manipulation library for the ELF format. It can run
both ondisk and embedded in the debugger using a unified interface. Libelfsh
is currently the biggest and oldest component of the framework.

– libasm is the typed disassembly library. It currently supports entirely Intel
and Sparc architectures. It provides a vector that allows for overloading its
features on demand (see next point).

– libaspect handles the vectors and hash tables which allow for reflection of the
whole framework. It also provide the type system for the ERESI language.
The idea to implement the type system in such a low-level component make
it possible for handling types in an unified way in both the analyzed program
and all components of the framework itself.

– libemalloc is the allocation proxying library. It allows the embedded de-
bugger and the legit program to keep a separate memory pool for dynamic
memory allocation, thus providing heap memory unintrusiveness, making the
debugger useful for the analysis of heap-contained structure, for instance in
the development of heap exploits.

As you can notice, the vector data structure is central in our framework.
Part 6 of this article is dedicated to the explanation of it. Before entering such

6

level of details, we will sum up the various contributions that make the ERESI
framework a unique environment for efficient analysis of hardened programs.

2.2 Effective analysis

The first contribution of our framework is the ability to debug and trace pro-
grams efficiently. The usual debugging framework suffers from a lack of integra-
tion with the debuggee program. Because the normal architecture of a debugger
is to be a separate component, there is the need of context switching each time
the debugger wants to access variables of the debuggee program. The worse case
arises when the debugger is made scriptable. In that case, the number of context
switching is proportional to the number of variable access made by the script.
As this might not seem like a limitation, this make automated analysis much
slower. In our case, the interpreter of the ERESI language in which the scripts
are made is mapped directly in the debuggee program address space, so there is
no need of any context switching during debugging. Thus, our framework is much
more adapted for the automated runtime analysis of program. As an example,
advanced fuzzy testing techniques that make use of feedback information [11]
to optimize the choice of analyzed program paths is made a lot more efficient
without the use of OS-level API such as ptrace.

2.3 Tracing and Debugging on hostile systems

Another consequence of not using OS-level API is the ability to trace (and
debug under certain conditions) programs even if debug API is disabled. For
instance, our tracer and our base debugger are not blocked because of grsecurity,
when systems comes with the ptrace system call disabled. Because we inject
the debugger in the debuggee process, we are also not restricted for reading
and writing the memory content of such programs once the library is injected.
Additional memory protection can be provided by kernel patches such as PaX to
counter buffer overflow attempts or injection of malware. This protection makes
the executable part of the memory not writable in runtime, but injecting our
debugger is not a problem on those systems.

Because we use multiple techniques for data and code injection [7], we never
have to write in unauthorized areas when we do static injections. Nevertheless,
in some cases it happens that we may need to write in the code sections of the
program while debugging, for instance when we want to install breakpoints by
the special processor opcode, or by function hijacking. For this, we use a special
technique that is not blocked by the PaX kernel patch, even when all options
of it are enabled. The technique simply consists in remapping the memory area
from userland instead of trying to change their rights. This is smarter than just
disabling the mprotect PaX option for the desired binary (which is possible as
well in case the binary is read-accessible and PaX is compiled in soft mode. As
this is the general case, we do not restrict our analysis to this situation).

7

Obviously, this technique can be countered by explicitely refusing such remap-
ping, for instance when creating a special grsecurity ACL configuration, but the
experience shows that real-world systems often lack of such configuration, or do
not enforce it for other reasons. In case this grsecurity option is enforced and the
binaries are not readable, other PaX related features, such as the handling of text
relocations, could be used to allow write access to code zones in order to perform
function hijacking or breakpoint installation, but this technique is not included
in the current version of the debugger. However, we support all the relocation
API that would make possible to specially craft relocation entries for performing
such operation. If none of these techniques make it possible to hjack functions,
we can still modify the content of function pointers (that includes the content of
special ELF sections such as the Global Offset Table, or the heap management
morecore function pointer on ptmalloc [12] implementation of Linux) so that we
keep being capable to redirect library functions or indirectly called functions.

2.4 A unified debug format

A debugging format is an important source of information as it permits to re-
trieve a description of each element that composes a binary. There are many
different formats to fulfil the same goal, this diversity is an obstacle for an use-
ful implementation and most reverse engineers do not bother implementing the
support for them. Libedfmt parses every formats to create a uniform represen-
tation. This uniform representation is created on 3 steps. First we analyze a
specific format and create an interface that make possible to read it. Then we
transform this format using the uniform API. During this transformation, we
keep only important information that we can find in all debugging format. A
part of this information can be extracted with analysis tools but a debugging
format provides you all types and names for functions and variables. The last
step is about cleaning allocated memory so we have enough space to fetch the
rest of the information.

For the moment libedfmt supports stabs and dwarf2. This made us realize
that a different parsing engine had to be done for each debugging format. Stabs
manages types by identifiants without any reference to the position in the debug
section. You have to keep in memory all elements to be able to parse the infor-
mation. Dwarf2 contains more information and you cannot store all of it without
wasting a big part of your memory. At least, it contains a clear reference system
and you can find a dependence without parsing everything. Even in libedfmt,
you cannot read stabs and dwarf2 the same way, and each transformation has
to be implemented differently.

When a file is compiled, a format is chosen to store the debugging informa-
tion. The final binary can use more than one format. That is why it is needed
to support more than one debugging format backend. Our library parses every-
thing available and creates an unique representation. Once this representation
is made, we add every retrieved types directly into the ERESI type engine. We

8

update a hash table for each type with the list of all variables typed as such. The
combination of ERESI and libedfmt creates a powerful debugging and reversing
environnement that allows for saving and retrieving the types information.

In the future, libedfmt will be able to parse more debugging formats and
should be used in e2dbg to display information that we cannot rebuild without
source code, such as current file lines of the debuggee program.

2.5 Ad-hoc types recovery

When performing reverse engineering of closed source software, a very useful
feature is the recovery of types for the analyzed program data structures and
variables. While this can be achieved with the use of debug information (as ex-
plained in the previous section), we bring the innovation that makes the user
capable of giving complex types for memory zones of the program, without any
debug or source code information. This is made possible using our builtin type
system, which is sufficiently expressive to handle complex types, including (mu-
tually) recursive structures, pointers or multidimensional arrays. We also bring
the capability to define partial types, in which a part of the type is only defined
by its size. This is very useful when doing incremental reverse engineering and
recovering types as the manual binary code analysis is going.

This is a major contribution to reverse engineering, as no current frame-
work is capable to perform this kind of analysis. The GNU debugger only allows
for existing types (indicated by the debug format) to be manipulated and does
not provide any support for partial types. The IDA framework allows to define
data structure templates in order to perform incremental type recovery, but this
feature is purely manual and is not naturally integrated in the IDA scripting
language (which does not have the expressivity of our type system). Unlike IDA,
we provide a special language binding that allows for creating types, which make
the feature useful inside ERESI programs that perform analysis automatically.
It is not clear how complex and extended is the ability of IDA to manipulate
the structure templates automatically (it might be possible using the API of
the project in C language, thus outside their scripting language) and how far
this framework is capable to create complex types such as partial or recursive
structures, including unbounded dimensions arrays of those. Our approach is
much clearer and unified with our language, which makes this feature useful
even for reverse engineers without knowledge of the ERESI framework internals.
This feature could be defined as the underlying language type system for the
automated type-based decompilation as presented by Mycroft [13].

Finally, this feature leads to a very promising runtime reflection of the an-
alyzed program data structures, as typed objects of the debuggee are automat-
ically bound in the language. For instance, hooking allocation functions such
as malloc and free make it possible to inform a type about a precise variable

9

(given its address). In that particular case, we can simply define the heap chunk
type in the ERESI language and inform the chunk type of each address that is
returned by the malloc function, so that the list of chunks is accessible through
the chunk type hash table of variables directly from the language, opening the
door to an advanced analysis of the heap evolution directly in the ERESI lan-
guage. Obviously, ad-hoc types recovery is not limited to heap variables, but this
example was chosen for pedagogical purposes as it is really easy to hook those
functions and automatically know the exact list of legit heap chunks available in
the analyzed program in a sound way, at any moment of the execution.

3 Programming techniques

3.1 Aspects weaving

Features of the framework are modularized in a way that their interface is ac-
cessible to the user. This allows to refine analysis in runtime, when features are
implemented differently depending on user-definable criterions, or when feature
needs runtime updates. Those concepts originally comes from the notion of as-
pect oriented programming [15] which was developped some years ago to fill the
lack of flexibility of object oriented designs.

This is acheived by the libaspect component of the framework, which imple-
ments vectors and hash tables primitives. Those data structures are the same
than those used for representing the language objects, so that all vectors and all
hash tables inside the project can be modified by the user. This correspondance
allows for a framework that is entirely capable of reflection and reification, as its
internal structures are accessible from the programming language, that make the
user capable of plugging modifications of the framework itself just as plugging
modifications on the debuggee program.

We applied this modelization to various points of the project. Each vector is
used to make the implementation of a particular feature to be modular, updat-
able, portable, and give it the capability to be traced, monitored, or improved,
or adapted to a particular requirement.

As most of those features are quite obvious and simple, this organization al-
lows for porting the framework on other architectures and OS just by registering
alternative handlers for them. Obviously, retreiving the program counter, getting
the next stack frame pointer, or enabling stepping is made in a different manner
depending on the operating system and architecture. This implementation is a
portable way to abstract those differences and this make our framework very
attractive because minimal efforts are needed to make it work on an originally
unsupported platform. More details about the vector data structure is given in
the part describing the ERESI reverse engineering language.

A new feature that comes with the current version of the libasm is its vector-
based architecture. This allows to overload the handling of disassembled instruc-

10

Vector name Role Dimensions Discriminant criterions Host module

REL ET REL injection 3 Architecture, Object type, OS libelfsh

CFLOW Control flow redirection 3 Architecture, Object type, OS libelfsh

PLT Original PLT redirection 3 Architecture, Object type, OS libelfsh

ALTPLT Alternative PLT redirection 3 Architecture, Object type, OS libelfsh

ENCODEPLT Encoding of regular PLT entries 3 Architecture, Object type, OS libelfsh

ENCODEPLT Encoding of first PLT entry 3 Architecture, Object type, OS libelfsh

BREAK Breakpoint installation 3 Architecture, Object type, OS libelfsh

EXTPLT External symbols relinking 3 Architecture, Object type, OS libelfsh

ARGC Function arguments counting 3 Architecture, Object type, OS libelfsh

GETREGS Retreive registers context 3 Architecture, Host type, OS e2dbg

SETREGS Modify registers context 3 Architecture, Host type, OS e2dbg

GETPC Retreive program counter 3 Architecture, Host type, OS e2dbg

GETRET Retreive return address 3 Architecture, Host type, OS e2dbg

GETFP Retreive frame pointer 3 Architecture, Host type, OS e2dbg

NEXTFP Follow next frame pointer 3 Architecture, Host type, OS e2dbg

SETSTEP Enable singlestep mode 3 Architecture, Host type, OS e2dbg

RESETSTEP Disable singlestep mode 3 Architecture, Host type, OS e2dbg

ASM Opcode hooking 2 Architecture, Instruction opcode libasm

Table 1. Registered vectors in libaspect

tion, which has a potentially wide amount of applications, such as dataflow anal-
ysis or opcode tracing. Let’s detail a little bit more our advanced disassembling
interface.

3.2 Typed disassembling

Libasm is a binary disassembling library designed for multiple architectures. It’s
one of the lowest-level components and, as such, must do a variety of tasks to
support all the components on top of it. Libasm currently supports SPARC V9
and Intel IA-32. Currently in progress, there is also efforts to port this library
to support MIPS code.

Besides providing the basic disassembling functionalities, libasm implements
extra features to better support the services provided by the upper layers that
rely on it. One of these features is its type system. By labeling all the disas-
sembled instructions with common types, libasm makes program analysis tasks
easier.

It is important to notice that these types are not mutually exclusive, this way
you can have an arithmetic instruction that is known to modify some processor
flags. Furthermore, this type system is shared between all portings of libasm, so
programs or other libraries lying on top of it can, for instance, detect forward
control flow changes just by checking if the current instruction being analyzed is
of one of the 3 types, without even caring about on what kind of machine code

11

Type Description

IMPBRANCH Imperative branch (jump)

CONDBRANCH Conditional branch

CALLPROC Call to a procedure

RETPROC Return from a procedure

ARITH Arithmetic or logic operations

LOAD Memory data load

STORE Memory data store

ARCH Architecture-dependent instruction

FLAG Flag-modifier instruction

INT Interrupt or call-gate instruction

ASSIGN Assignment instruction

TEST Comparison or test instruction

NONE Instruction that does not fit any of the above

Table 2. Libasm instructions types

this analysis is being done.

Another very interesting aspect that libasm features is the fact that every
opcode handling function written is stored inside a vector of the kind provided
by libaspect. When disassembling an instruction, libasm retrieves the correct
handler by querying this vector on its 4 dimensions: 1 regarding the machine type
and 3 about opcode information (including architecture-specific requirements,
such as SPARC’s secondary opcode). Storing the addresses to these functions in
this vector brings to the user the advantages of being able to dump and modify
vectors from inside ERESI’s scripting language. So, in practice, the function that
does the job of disassembling a given instruction can be replaced in runtime by
other code of the user’s choice, allowing for easy opcode tracing, among other
applications.

3.3 Generic containers

Libmjollnir is currently the main ERESI component for code fingerprinting and
analysis. Among its analysis capabilities there is the construction of control
flow graphs, both at basic block and at function level. Besides having separate
structures for representing both entities, libmjollnir also stores them in generic
structures called containers. Containers have link information (input and output
links), a pointer to the actual data encapsulated, and information about the type
of the data object, so the data can be accordingly interpreted.

The use of containers abstracts type information, thus giving the possibility
to write analysis routines that work at this higher level of abstraction, walking
through the graph of containers. Currently we only store blocks and functions
inside containers, what suffices the needs of control flow analysis for these en-
tities. In the future, we may store data nodes inside containers too, in order to

12

perform data flow analysis. Finally, there is also the idea of having containers
of containers, providing a ”zoomed out” view of other graphs, eg. the linking
between modules as a more abstract view of the linking between functions.

3.4 Allocation proxying

As the core of our framework of analysis runs in the same process than the an-
alyzed process, it is very important to separate the memory used by the reverse
engineering framework from the memory used by the legit debuggee process.
Obviously, this matters only when we are debugging programs, and not when
performing static analysis, as static analysis does not execute the program it
does not need to care about memory unintrusiveness. Unintrusive debugging is
based on the fact that the heap of the debugger and the heap of the debuggee
must stay separated. This remark also holds for the debugger and debuggee’s
stacks, as we do not want to mess the debuggee stack when we debug our pro-
grams.

The stack unintrusiveness can be realized using a modelization choice, by
making the debugger to execute in a separate thread, so it also inherits from
a separate stack whoose base pointer is swapped when each thread is taking
control (as provided by POSIX standard thread libraries of the various UNIX
operating systems). However this introduces intrusiveness in the threads table,
and requires to turn monolithic processes into multithreads ones in runtime. A
best approach seems to use the sigaltstack system call and be able to specify an
alternative stack when a signal (such as SIGTRAP on breakpoints) is received
in the debuggee process.

The heap separation is more subtle, as the memory allocation is done entirely
in runtime, unlike the stack allocations which are partially realized at compi-
lation time (so we just have to take care about stack-related registers in runtime).

Our technique was named after the Syscall Proxying [14] idea which is mostly
useful for the writing of vulnerability exploits in order to simulate remote execu-
tion when some particular required system calls are not available on the target
machine, making it possible to execute entire binaries (such as a UNIX shell) but
only executing some particular syscalls (like file systems accesses) on the target
machine. However, heap separation cannot be implemented simply by alloca-
tion function proxying, since the returned values of those functions are memory
pointers that are accessed for reading and writing in the subsequent code of the
debugger. Using an external allocator would also require to proxy the accesses
of all memory zones allocated in such way.

Our choice was to isolate a dedicated portable heap management system for
the debugger, that allocate and destroy all its memory chunks in a single mapped
memory region. We then garantee that the heap allocator is totally unintrusive,
modulo the fact that a certain memory range will not be allocatable for the legit

13

heap. The choice of the base address for this zone should adapted from OS to
OS and from architecture to architecture, or even from debugged program to
debugged program. A judicious default choice is the one of a very low virtual
address (in the very first pages of the address spaces) that is rarely used, unless
special modification of the OS or behavior of the debuggee program implies so.

The challenge that represented allocation proxying is more than the choice of
the alternative heap base address. Indeed, as the analysis module of the frame-
work is mapped inside the debuggee process itself, it can shows the need of a
dynamic allocation before the minimal debugger environment is set up. This case
can happens in 2 situations : when the debugger thread is not yet created (as
we rely on the POSIX thread library of each operating system), or when the de-
bugger thread is created (so it already installed its own allocation handlers since
the debugger is mapped in first in the program using the LD LIBRARY PATH
enviroment variable.

We noted that it is not a definitive choice to use the LD LIBRARY PATH
variable, as it implies that the allocator proxy is mapped in first in the program
(so its symbol have the strongest priority since the object is located in first in the
linkmap linked list of mapped objects). If we want to make the debugger to work
using an ad-hoc library injection, we would have to redirect allocation primitive
functions in the process before starting to debug the program, but this feature
is still to be implemented, as function address lookups and hijacking still have
to be realized without using any allocations functions (even at initial conditions).

Once the proxy allocator takes control in the proxyfied {m,c,re}alloc and
free functions, we can face two situations. As all dependences of the program are
already loaded when the first debuggee calls to malloc happens, the debugger
code and data are already mapped in both of these situations. The first initial
situation is when the debugger thread has not been created yet. In that case,
the debugger memory mapping i already done (so we can use allocation-free
functions inside the debugger), but the initialization of the debugger structures
(that requires allocations) did not happen yet. Our solution is simply to keep
a variable initialized to 0 to hold the thread id of the debugger. In case this
variable is 0 or equals to the thread idea of the debugger, we call the separate
heap implementation. In the other case, we call the legit allocations functions
for the debuggee program to allocate in its legit heap.

Is the technique acheived ? Not yet. Indeed, we still had to make sure that
we were able to resolve allocations functions without using dynamic memory
allocations. This is realizable using a lookup of the linkmap linked list content,
whoose first element is pointed by the second entry of the Global Offset Ta-
ble section. As each element of the linked list contains a cache of the exported
symbol table (the ELF .dynsym and .dynstr sections), we can resolve symbols
and guess base address of objects without any external allocations. The cost of

14

this technique is a small function that has to lookup the Global Offset Table
address statically in the ondisk file using data statically allocated, in order to
know where the linkmap base address stands (as specified by the ELF reference).

It is to be determined if that technique is appliable to other binary format
than ELF (for instance in the PE binary format), but we believe that proxy
allocation side effects would still keep a minimal place independently of the bi-
nary format specifications, so that the technique is potentially portable to other
frameworks.

4 Applications

Thanks to the modular approach, we can derive multiple tools for debugging,
static and runtime analysis of programs. In that section, we present the archi-
tecture of our embedded debugger, the algorithm of our embedded tracer, and
an example of modular graph-based analysis taking advantages of our generic
containers data structures.

4.1 The embedded debugger : e2dbg

The debugger is made of two parts. First, the client-side that is responsible for
communicating the user requests to the embedded debugger. In the classical
scheme, the embedded part takes control before the main function is executed,
so that the user can perform analysis as soon as requested. The embedded de-
bugger also handles all important signals (including SIGTRAP, SIGSEGV ..)
so that it catches debugging events such as breakpoints, and debuggee program
crashes.

The first innovation that comes with this tool is about its architecture. The
fact that the debugger is made bipartite allows for a very flexible handling of
targets. For now, only the userland debugging is available, but in the future we
can imagine any kind of targets (embedded systems, kernel-level code..) being
supported by this framework without changing anything in the modelisation.
Of course, the way to handle breakpoints, stepping, or other debugging events
varies from target to target, but the vector system of the ERESI framework al-
lows for a very fine grained implementation of features, so that most of the code
is reusable without any change.

The embedded debugger was not created with this modelisation since the
beginning [10] but is an evolution after a lot of experiments with the debugging
of multithreads programs in an embedded context. We have been testing vari-
ous ways to keep a high performance while hooking programs, staying portable
and stealth for OS-level protections, and reusing the available code as much as
possible since our early development [7] about on-disk analysis of programs.

15

Fig. 2. The embedded debugger

Our successive experiments looked like this :

1. We first tried to map the complete ELF code as a new dependence library
of the program beeing debugged. This worked well, as we just had to cre-
ate an intermediate function that was responsible for accessing the data of
the manipulated object, but keeping the same manipulation code for on-
disk and runtime structures modifications. This was the core of our powerful
embedded debugger idea. However, this solution was not taking care of un-
trusiveness in the host process memory as we used the same heap than the
debuggee, which made the debugger useless for heap-related debugging, such
as heap overflow exploits. Additionally, this first implementation was mono-
lithic and not capable to handle multithreads programs.

16

2. As a second generation embedded debugger, we first implemented the allo-
cation proxying technique. As already explained, this technique allows for
two different heap allocators to reside in the host process memory, which
made the debugger completely heap-unintrusive, and improved greatly its
usefulness for real-life needs. We also changed the debugger system for run-
ning in a separate thread. This had the advantage to naturally handle multi-
threads program and the debugger execution context using a unified API, by
hooking signals and then selecting what to do depending on which thread
was breaking the execution. This also had the advantage of beeing stack-
unintrusive, as each thread (including the debugger) had a separate stack.
However, this was still not completely bullet-proof and this for two reasons.
On the one hand, we introduced intrusiveness in the thread manager table,
as we had to switch to a multithread process even if the original process was
monothread. On the other hand, we needed a signal-based communication
between threads that appeared to be way too complex to manage, especially
when we implemented thread context modification feature. Indeed, when a
thread is breaking, only its context is available, and the only way to retreive
the other threads’s context is to send each of them a signal (handled using
the sigaction system call) in order to stop them and retreive their register
values at the same time. Additionally, a signal had to be delivered to the
debugger thread to wake it up, so that it could start the analysis.

3. In order to simplify the threads management, we decided to do a compromise
on the architecture of the debugger. We now keep the whole threads API so
that we continue to be multithreads capable. However, the debugger is not
running in a separate thread anymore but on top of each thread. This reduces
the number of signals to be delivered as the debugger does not have to be
woke up anymore. This also reduces the number of necessary mutexes from
four to one (the remaining one beeing around the breakpoint/step handler,
so that we dont try to handle simultaneous breakpoints of threads, but we
queue them.). This made the thread-table intrusiveness to disapear. However
we restarted to be stack-intrusive. Even if reusing the current thread stack
is less critical than reusing the heap (as the stack pointer comes back to the
legit value after the debugger is finished), this is still a minor issue to resolve.
A potential solution is to use the sigaltstack system call in combination with
the sigaction system call, which allows to specify an alternative stack context
when a signal is received. However, the current debugger version (0.77) at
the time of writing this article is still not implementing the alternative stack
technique, but this should be added any time soon.

After describing the techniques we use for the debugger, we will focuss on
another component of the ERESI framework : the embedded tracer.

4.2 The embedded tracer : etrace

Etrace is an embedded tracer which was built for tracing internal and external
calls. Most tracers do not trace internal calls because they rely on a statically

17

stored function prototypes list. Despite the fact that it provides a correct pro-
totype on those functions, you cannot deal with unknown functions. Etrace is a
tracer built to deal with every functions. It means you do not have to create a
function prototypes database.

Our tracing technology is dynamic and supports multiple architectures. We
take advantage of the debugging format information of libedfmt to retrieve ex-

18

Fig. 3. Tracing algorithm

act function prototypes. In case the debugging information is not available, an
architecture dependent analysis permits to retrieve a deduced prototype. We
present our tracer as embedded because we redirect traced functions directly in
the target binary. Then we create a new file that includes and reports tracing
information. Etrace does not use any kernel debugging interface and only relies
on analysis of parameters. This is done using an architecture dependent function
that is hooked using a vector.

1 Processing function arguments:
2 foreach Traced Functions:
3 if (Internal function)
4 if (Debugging information is present)
5 • Retrieve prototype information
6 else
7 • Architecture dependent argument counting
8 endif
9 else

10 if (Dependence library is available)
11 if (Debugging information is present)
12 • Retrieve prototype information
13 else
14 • Architecture dependent argument counting
15 endif
16 else
17 • Architecture dependent argument counting
18 endif
19 endif
20 • Add a proxy function into a generated C file
21 endforeach
22
23 Architecture dependent argument counting:
24 • Set argument count to 0
25 • Search a call to this function
26 if (We found a call)
27 • Start a backward argument counting
28 if (Argument count is 0)
29 • Start a forward argument counting
30 • Return argument information
31
32 Generate binary module:
33 • Compile the generated C file as a module
34 • Inject this module using ET REL injection technique
35

19

36 Redirect target function:
37 foreach Traced Functions:
38 • Redirect the function using CFLOW / ALTPLT technique

The previous algorithm shows how our tracer takes advantage of the ELFsh
framework features. The CFLOW and ALTPLT techniques were already de-
scribed in [10]. They allow for redirecting calls on our generated functions. Etrace
reduces architecture dependences by generating and compiling a .c file which
prints information on every redirected functions.

During function redirection, we check each argument and try to see if it is a
pointer, a string or a value. When we try to read each argument as a pointer,
we handle the SIGSEGV signal. If it is not a pointer, this signal handler will
take control, and we can declare the parameter as an immediate value. Other-
wise another check is performed which indicates if this pointer is a string. For a
simple pointer we display 4 first bytes. The previous SIGSEGV signal handler
is restored after our pointer test. Those information help us to create a correct
prototype of the function. This runtime check does not rely on debugging format
thus allowing us to deduced prototype information on any case.

An example of the output for sshd can be found on section A page 27.

Additionally, our tracer provides a way to group functions. That allows for
the user to decide which pool of functions he wants to trace. For now, this
support is only static, as the tracer is not entirely interfaced with the debugger
at the moment of writing this article. However, the extension of this feature will
make possible to decide in runtime which function to continue tracing or which
function to remove from the inspection list as the analysis is going.

function name etrace (sec) ltrace (sec) ratio

open 0.000072 0.000106 1.47

write 0.000070 0.000106 1.51

crypt 0.001560 0.001618 1.03

calloc 0.000143 0.000200 1.39

unlink 0.000046 0.000082 1.78

puts 0.000033 0.000078 2.36

getcwd 0.000009 0.000039 4.33

close 0.000007 0.000038 5.42

strdup 0.000007 0.000022 3.14

free 0.000005 0.000020 4.00

Table 3. Performance comparaison between etrace and ltrace

20

5 ERESI : Towards a reverse engineering language

In this part of the article, we will go one step more abstract, by describing the
internals of the reverse engineering language of our framework. First, we detail
how the variables of ERESI programs change their type when it is necessary
(that could be labeled as weak typing) and how types are enforced when we
cannot do in another way (to avoid unrequested behavior to happen). At the
same time, we introduce our main internal data structure : the reflective vector.

A reflective vector, informally, is an container object whoose elements are all
of the same type. This type can be, among others, a function pointer, or the
type of a set of elements, represented in practice by a hash table. Depending on
the type of the vector elements, the vector has a different use. We call it a reflec-
tive vector because all existing vectors are accessible from the ERESI language,
so that we can change as we want the content of the vector as the analysis is
going. As all big features of the framework are registered in vectors, that make
it possible to update or swap in runtime the framework behavior, in a single line
of ERESI code.

5.1 The ERESI type system

The language of the framework was made primary with reflection and modularity
in mind. The concept of a reverse engineering type system follows the idea that
manual or automatic type information can be adapted to the required format of
data. Thus, each data object in the language does not have a determined type
as it evolves as you use the variable. For instance, writing an array of integers in
memory would first need to convert this array as a raw data buffer, then write
its contents at the desired address. Inversly, extracting data from raw sections
must allow for extraction in any desired format.

The language base types can be ordered as a semi-lattice, that is adapted for
allowing or refusing type conversion from a given type to another. We separate
simple types (including uniform function types) and container types such as hash
tables and vectors. Those last types are combining aspect oriented advantages
with the flexibility requirement of reverse engineering, as the framework objects
are contained in vectors and hash tables, so it is possible to change pieces of
the framework itself in runtime and overload it on demand. For instance, adding
new fingerprinting discriminants or additional binary analysis can be performed
by modifying the vectors of libmjollnir or libasm. We have not detailed the fin-
gerprinting capabilities of libmjollnir in that article as we plan to dedicate a
complete paper about it in the future.

21

Fig. 4. The ERESI type system

Formally, we can separate simple, containers, and generic types :

– Simple types are denoted by ψ : { char, short, int, long, str, func } ⊂ Ψ

– Containers types are denoted by γ : { vect, hash } ⊂ Γ

– Abstract types are denoted by σ : { L1, L2, path } ⊂ Σ

For convenience of notation, we also define Λ = Ψ ∪ Γ to denote the set of
all concrete objects, as some of our functions can act on both kinds of objects.
We define 4 simple operations on types that allow to manipulate data easier in
the framework, both manually or automatically :

lookup : Γ × Ψn 7−→ Σ
reify : Λ 7−→ Σ
reflect : Σ 7−→ Λ
convert : Ψ 7−→ Ψ

The lookup operation corresponds to the action of retrieving a simple object
from a container, by passing the vector name, and all the n coordinates inside

22

the vectors of dimension n. Reification is the action of making an object of the
ERESI framework itself available in the programming language. Reflection is the
action of concretizing an object from the language into the framework. Finally,
the semantics of convert is quite intuitive as it just converts between concrete
types.

5.2 Using vectors

In order to understand better this structure, we give additional hints for using
this system :

1. Reflection and reification of container objects make programming very prac-
tical as internal framework structures and routine can be manipulated and
updated from the language.

2. The lookup and reflect operations combine as an set partitioning when
reflect(lookup(V ect× Ψn)) 7−→ Hash . Indeed, each vector indexation acts
as a discriminating parameter between input sets of objects, creating smaller
sets (represented by the right-side hash tables).

3. The lookup and reflect operations combine as a control flow aspect when
reflect(lookup(V ect × Ψn)) 7−→ Fct. Features of the framework can be
hooked in runtime using such objects in the language.

4. The convert operation only applies to simple types and does not require to
enter the reflection and reification cycle. Obvious conversions are done by a
convert : ψ 7−→ Raw or convert : Raw 7−→ ψ . We distinguish particulary
some interresting conversions. convert : Func 7−→ Raw as it allows for con-
verting a function object to a raw data object being the code of the function.

As an example of use of those operations, we have interest for set partitioning
when it comes to do compositional fingerprinting. For instance, the vector index
for each of its dimension can corresponds to the graph distance from the current
object (block, function or instruction) to a certain code pattern in the analyzed
program. Additional dimensions for a fingerprinting vector can then discriminate
between objects that were sharing a common fingerprint criterion on previous
vector dimensions (and then were contained in the same set before introducing
those additional criterion). We called this compositional fingerprinting as each
dimension of the vector can represent a different way to separate elements for
fingerprinting purpose.

As another example, control aspects guarantee a fine-grained modularity of
our analysis framework once they are organized using vectors, as explained in
previous parts of the article.

23

6 Related work

In this section, we briefly discuss the work related to modular debugging. Sev-
eral of our features are available in other debugging framework, such as remote
debugging, language based debugging, or graph based debugging. However, none
of the existing frameworks manage to provide a unified interface for all of those
features. Additionally, the innovation of our work resides not only in new fea-
tures available nowhere else (such as reflection on binary programs or on-the-fly
typing) but also on the way they are implemented in an embedded framework,
without any debug API at the OS level.

6.1 Remote debugging with gdb

The GNU debugger has a useful feature often called gdb stubs. Stubs are pieces
of backend code that allow for reusing the gdb code base for the debugging of
any kind of systems. It comes with a protocol for communicating between the
debugging client and server, so called the gdb remote protocol. A Gdb stubs has
to implement a minimal set of functions in order to be operational. Those func-
tions essentially include the interface for reading and writing registers, reading
and writing memory, stepping and continuing the process. It also include func-
tions for more elaborated features such as memory search, setting of memory
variables, console output, or last signal information.

As this feature makes gdb attractive for porting on any kind of systems,
the stub has to be programmed in C language and linked with the server side
debugger. The vector system of ERESI provide a similar feature than Gdb stubs,
but additionally the vector can be overloaded using code in ERESI language
itself, so the porting of our debugger to additional targets is made easier than
gdb stubs. However, there is a wide amount of available gdb stubs, whereas our
framework is fresh and we still lack of experience on porting it to exotic systems
to conclude anything yet.

6.2 Reflective debuggers

The work on reflective debuggers [17] has been very academic until now, and we
are not aware of any previous reflective debugger that is capable of debugging
real world binary programs, with or without the need of the source code. Addi-
tionally, the only related work presenting a minimalistic reflective debugger was
made for an interpreted language. Their approach has in common with our work
that reflection does not rely on source language construct, unlike approach used
in the Java-based AspectJ language, but on the runtime environment that han-
dles the execution of interpreted programs. A consequence of providing a proof
of concept for an interpreted language is their ability to select the granularity of
reflection in a very fine way, so they can decide wether to provide reflection on
control structures or data variable on demand.

24

The reflection in the ERESI language can only handle the control structure
of binary program until now. We can think about handling data-level reflection
as well but it is not obvious how to acheive this on hardened systems without
relocation information in the binary files (as reflection on data variables would
be done using inline patching of the code that access those variables, which
would result in changing the location of assembly instructions, which is not al-
ways possible without information on how to relocate the code, or with a perfect
data flow analysis engine for binary code. For instance, instructions performing
relative memory accesses cannot be executed in another location unless they are
reencoded to do so).

Hardened systems bring a bigger challenge to data-level reflection of binary
code as it might not always possible (depending on the hardened configuration)
to write on code instruction in runtime, as explained at the beginning of the
paper about the debugging of hardened systems. In the hypothesis that the
reflective analysis benefits from the output of a perfect data flow analyzer, then
we might be able to realize data-level reflection on hardened systems only using
static analysis and without the need of relocation information. However, the
existence of such a perfect data flow analyzer for binary code is far from being
confirmed, as various hard problems such as the aliasing of computed pointers
are answered only in a conservative way.

6.3 Embedded debuggers

Among the few efforts to achieve an embedded debugging (also sometimes called
in-process debugging) behavior similar to what we have presented, Microsoft’s
.NET Framework debugging API seems to be the most popular. This API, con-
stituted by a subset of the System.Diagnostics namespace, provides some useful
methods and properties to help a program debug itself. However, as far as we are
concerned, the power of this API is very limited, restricting itself to some pro-
filing functionalities and lacking the ability to change program state, therefore
not being able to set breakpoints or stepping instructions. [16].

6.4 Python debuggers

Some new frameworks, such as IDA-python [22] or the PaiMei debugging suite
[21] on the windows operating system, are based on a recent generation of pro-
gramming language, which make the development faster. However, the use of a
general purpose programming language still let the framework language more
verbose than necessary. For example, a code iterating on the basic blocks of an
analysis program can be done in around 20 lines of python code, whereas you
need less than 5 lines in ERESI to realize the same operation.

There are multiple reasons for this. First, our language is dedicated to reverse
engineering and its primitives directly include hash tables of existing blocks and
functions, and handle regular expression in an attractive syntax. Additionally,

25

those tools are based on the IDA code base written in C language, so it comes
as an additional layer on top of an existing tool. On the opposite, our language
is integrated directly in the framework and we can adapt its syntax for our own
needs. The reflexivity of the framework data structures make possible to access
such computed information without any additional interfacing.

Finally, we do not need any general purpose virtual machine for such a com-
plete language as python or ruby, but we rely on the minimalistic vm of ERESI,
which is able to scale for the analysis of large programs even when embedded
in-process. We are not trying to argue that our language is better than python,
but that it is more dedicated to the task of reverse engineering, and the language
itself (and not only the framework features) can be adapted to our need as we
get inspiration from other programming languages. For instance, features such
as program transformation or type-based decompilation will be integrated in
the future using 2 simple additional commands (match and transform) whereas
similar features in python would turn into developping a library and provide
additional functions to the reverse engineer, which would lack the beauty and
the intuitive aspect of the language.

6.5 Graph-based debuggers

Reverse engineering tools such as BinNavi [19] or IDA [18] provide a very at-
tractive graph-based interface for the analysis of programs. In the first case, it
comes with a certain latency as the interface code is written in Java. In the
second case, the visual aspect is well suited for manual analysis. In both cases,
the systematic approach to information visualization made the development of
real code analysis features to be slowed down. For instance, none of those frame-
works come with an innovative intermediate form other than control flow graphs
of a low-level translated micro-assembly. That form allows for eliminating the
implicit operations made by assembly instruction.

However, if in-depth analysis requires such capability, or at least requires the
framework to bring facilities for building your own intermediate form, it must be
towards a custom intermediate form that is adapted to the user problems. This is
why we started to type instructions in libasm. We also bring a graph visualization
feature, but we provide it only on request to the user, using the graphviz [20] tool.
Obviously our graph visualization is not as good as the mentioned tools but our
internal graph structures are more complete than simple cross-references with
annotations. Our generic container system also brings the possibility to reuse
our whole API for the graphing of any kind of element relations, which open the
door to the display of data flow graphs or other kind of dependences relation.

7 Conclusion

We provide an alternative framework for debugging programs in a hostile envi-
ronment with the perspective of reverse engineering. This novel model of analy-
sis allows for high performance, unintrusive, multiarchitecture analysis of binary

26

programs without needing the source code. Our implementation includes a dis-
assembly engine, a binary manipulation library, a fingerprinting library, and the
support for a new powerful debug format that keep compatibility with exist-
ing ones. We rely on a minimal aspect oriented interface for modularity and we
propose a practical scripting language and its ad-hoc type system. Thanks to
this fine-grained architecture, we manage to provide the base interpreter func-
tionalities in a small and extensible core for rapid development of specialized
interpreters. We gave three examples of such instances : the ELF shell for ondisk
analysis, the Embedded ELF debugger for runtime analysis, and the ELF tracer
that combine both facets.

References

1. The ELF shell crew, The ELF shell
http : //elfsh.asgardlabs.org/

2. The GNU project, The GNU debugger
http : //www.gnu.org/software/gdb/

3. The PaX team, Grsecurity project
http : //pax.grsecurity.net

4. Dave Aitel, Fuzzy testing tools
http : //www.immunitysec.com

5. Michal Zalewski, Fenris
http : //lcamtuf.coredump.cx/fenris/

6. ERESI : The ERESI Reverse engineering software interface
http : //eresi.asgardlabs.org

7. The cerberus ELF Interface, mayhem, Phrack Magazine issue 61
http : //phrack.org/archives/61/p61− 0x08 The Cerberus ELF interface.txt

8. Scut, Burneye. Phrack Magazine issue 58
http : //phrack.org/archives/58/p58− 0x05

9. UPX team, The Ultimate Packer for Executables
http : //upx.sourceforge.net

10. Embedded ELF Debugging, The ELF shell crew, Phrack Magazine issue 63
http : //phrack.org/archives/63/p63− 0x09 Embedded Elf Debugging.txt

11. AutoDafe : An Act of Software Torture
http : //events.ccc.de/congress/2005/fahrplan/events/606.en.html

12. Wolfram Gloger’s malloc homepage
http : //www.malloc.de

27

v
13. Alan Mycroft, Type-based decompilation

European Symposium and Programming (ESOP99)

14. Maximiliano Caceres, Syscall Proxying : simulating remote execution
BlackHat 2002
http : //www.coresecurity.com/files/files/13/BlackHat2002.pdf

15. G.Kiczales, Aspect Oriented Programming
First International Symposium on Generative and Component-Based Software
Engineering

16. Mike Pellegrino, Improve Your Understanding of .NET Internals by Building a
Debugger for Managed Code
http : //msdn.microsoft.com/msdnmag/issues/02/11/CLRDebugging/

17. M Ancona, W Cazzola - Implementing the essence of reflection: a reflective
run-time environment
Proceedings of the 2004 ACM symposium on Applied computing

18. Ilfak Guilfanov and the datarescue team - The Interactive Disassembler
http : //www.datarescue.com/idabase/

19. Halvar Flake and the sabre-security team - BinNavi
http : //www.sabre− security.com/products/BinNavi/

20. Graphviz - Graph Visualization Software
http : //www.graphviz.org/

21. Pedram Amini - PaiMei
http : //pedram.redhive.com/PaiMei/docs/

22. Gergely Erdelyi - IDAPython
http : //d− dome.net/idapython

A Etrace example

debug1: sshd version OpenSSH 4.5p1
debug1: private host key: #0 type 0 RSA1
Disabling protocol version 2. Could not load host key
debug1: rexec argv[0]=’/home/mxatone/ssh/openssh-4.5p1/sshd2’
debug1: rexec argv[1]=’-d’
debug1: rexec argv[2]=’-D’
debug1: rexec argv[3]=’-f’
debug1: rexec argv[4]=’/etc/ssh/sshd config’
debug1: rexec argv[5]=’-h’
debug1: rexec argv[6]=’/etc/ssh/ssh host key’

28

debug1: rexec argv[7]=’-p’
debug1: rexec argv[8]=’30’
0.000000 + socket(0x2, 0x6, 0x401)
0.000424 - socket = 0x3
debug1: Bind to port 30 on 0.0.0.0.
0.000327 + listen(0x3, 0x80)
0.000330 - listen = 0x0
Server listening on 0.0.0.0 port 30.
0.000276 + socket(0xa, 0x6, 0x401)
0.009187 - socket = 0xffffffff
socket: Address family not supported by protocol
Generating 768 bit RSA key.
RSA key generation complete.
7.130742 + accept(0x3, *0xbfb71330 = 0x80 0x00 0x00 0x00, 0x0)
0.000262 - accept = 0x4
debug1: Server will not fork when running in debugging mode.
debug1: rexec start in 4 out 4 newsock 4 pipe -1 sock 7
0.000260 + execv(*0x80a5048 ”/home/mxatone/ssh/openssh-4.5p1/sshd2”, *0x80aa0a0
= 0x48 0x50 0x0a 0x08)
debug1: inetd sockets after dupping: 3, 3
0.000000 + get remote port()
0.000135 - get remote port = 0xe6ea
Connection from 88.191.25.122 port 59114
debug1: Client protocol version 1.5; client software version OpenSSH 4.5
debug1: match: OpenSSH 4.5 pat OpenSSH*
debug1: Local version string SSH-1.5-OpenSSH 4.5
debug1: permanently set uid: 22/22
debug1: Sent 768 bit server key and 1024 bit host key.
debug1: Encryption type: 3des
debug1: Received session key; encryption turned on.
debug1: Installing crc compensation attack detector.
0.017447 + packet get string(*u int length ptr: *0xbf8f4738 = 0x3e 0xda 0x4f
0xb8)
0.000117 - packet get string = *0x80ab9f0 ”mxatone”
debug1: Attempting authentication for mxatone.
0.018654 + auth password(*Authctxt authctxt: *0x80aaca0 = 0x00 0x00 0x00
0x00, void* password: *0x80b23a8 = 0x00 0xc5 0xde 0xb7)
0.000119 - auth password = 0x0
0.000060 + get remote port()
0.000066 - get remote port = 0xe6ea
Failed none for mxatone from 88.191.25.122 port 59114
0.974450 + packet get string(*u int length ptr: *0xbf8f42fc = 0xf2 0x64 0x07
0x08)
0.000137 - packet get string = *0x80a9970 ”test1”
0.973346 + auth password(*Authctxt authctxt: *0x80aaca0 = 0x00 0x00 0x00

29

0x00, void* password: *0x80b23a8 ”test1”)
0.000267 + sys auth passwd(*Authctxt authctxt: *0x80aaca0 = 0x00 0x00
0x00 0x00, void* password: *0x80b23a8 ”test1”)
0.001252 - sys auth passwd = 0x0
0.000064 - auth password = 0x0
0.000068 + get remote port()
0.000067 - get remote port = 0xe6ea
Failed password for mxatone from 88.191.25.122 port 59114
debug1: Unable to open the btmp file /var/log/btmp: No such file or directory
1.635880 + packet get string(*u int length ptr: *0xbf8f42fc = 0xf2 0x64 0x07
0x08)
0.000125 - packet get string = *0x80a9970 ”another test”
1.634292 + auth password(*Authctxt authctxt: *0x80aaca0 = 0x00 0x00 0x00
0x00, void* password: *0x80b2330 ”another test”)
0.000104 + sys auth passwd(*Authctxt authctxt: *0x80aaca0 = 0x00 0x00
0x00 0x00, void* password: *0x80b2330 ”another test”)
0.001199 - sys auth passwd = 0x0
0.000015 - auth password = 0x0
0.000023 + get remote port()
0.000024 - get remote port = 0xe6ea
Failed password for mxatone from 88.191.25.122 port 59114
debug1: Unable to open the btmp file /var/log/btmp: No such file or directory
3.526889 + packet get string(*u int length ptr: *0xbf8f42fc = 0xf2 0x64 0x07
0x08)
0.000123 - packet get string = *0x80a9970 ”try again”
3.525646 + auth password(*Authctxt authctxt: *0x80aaca0 = 0x00 0x00 0x00
0x00, void* password: *0x80b23a8 ”try again”)
0.000103 + sys auth passwd(*Authctxt authctxt: *0x80aaca0 = 0x00 0x00
0x00 0x00, void* password: *0x80b23a8 ”try again”)
0.001262 - sys auth passwd = 0x0
0.000062 - auth password = 0x0
0.000065 + get remote port()
0.000068 - get remote port = 0xe6ea
Failed password for mxatone from 88.191.25.122 port 59114
debug1: Unable to open the btmp file /var/log/btmp: No such file or directory
Connection closed by 88.191.25.122
debug1: do cleanup
debug1: do cleanup

