
1

RAIDE: Rootkit Analysis Identification

Elimination

by

Jamie Butler & Peter Silberman

2

Who Are We?

• Peter Silberman

• Undergraduate College Student

• Independent Security Research

• Author of FUTo, PAIMEIdiff

• Contributor to http://www.openRCE.org (VISIT THE SITE)

• Jamie Butler

• CTO of Komoku http://www.komoku.com/

• Software attestation

• Rootkit detection

• Author of Rootkits: Subverting the Windows Kernel

• Co-author of Shadow Walker proof-of-concept memory subversion rootkit

• Pioneer of Direct Kernel Object Manipulation (DKOM)

3

Agenda
• Overview of Rootkits

• Hooks

• Import Address Table (IAT)

• KeServiceDescriptorTable

• Inline

• Entry overwrite

• I/O Request Packet (IRP)

• Interrupt Descriptor Table

• Advanced Process Hiding

• Detecting Hidden Processes

• RAIDE

• Demo using RAIDE

4

What is a rootkit

• Definition might include

• a set of programs which patch and Trojan existing
execution paths within the system

• Hooks or Modifies existing execution paths of
important operating system functions

• The key point of a rootkit is stealth.

• Rootkits that do not hide themselves are not then
using stealth methods and will be visible to
administrative or forensic tools

5

Hooking in User Land

• IAT hooks

• Hooking code must run in or alter the address space of the
target process

• If you try to patch a shared DLL such as
KERNEL32.DLL or NTDLL.DLL, you will get a private
copy of the DLL.

• Three documented ways to gain execution in the target
address space

• CreateRemoteThread

• Globally hooking Windows messages

• Using the Registry

• HKEY_LOCAL_MACHINE\Software\Microsoft\Windo
ws NT\CurrentVersion\Windows\AppInit DLLs

6

Hooking in Kernel Space

• The operating system is global memory

• Does not rely on process context

• Except when portions of a driver are pageable

• By altering a single piece of code or a single pointer to

code, the rootkit subverts every process on the

system

7

USER MODE KERNEL MODE

KiSystemService

System Call

Table Entry
System

Service

Descriptor

Table

Call nt!NtCreateFile

ZwCreateFile:

mov eax,0x25

mov edx, 0x7ffe0300

Call [edx]

0x25

8

USER MODE

Kernel or module

Some rootkit

KERNEL MODE

System Call

System

Service

Descriptor

Table

Call nt!NtCreateFile

ZwCreateFile:

mov eax,0x25

mov edx, 0x7ffe0300

Call [edx]

0x25

9

System

Service

Descriptor

Table
Some rootkit

Kernel or module

Some rootkit

USER MODE KERNEL MODE

System Call

System

Service

Descriptor

Table

ZwCreateFile:

mov eax,0x25

mov edx, 0x7ffe0300

Call [edx]

0x25

10

ZwCreateFile:

mov eax,0x25

mov edx, 0x7ffe0300

Call [edx]

0x25

Nt!NtCreateFile
jmp 0008:11223344

[…]

[…]

mov edi,edi

push ebp

mov ebp,esp

jmp

nt!NtCreateFile+08

USER MODE KERNEL MODE

System Call

Kernel or module

System

Service

Descriptor

Table

Some rootkit

11

I/O Manager and IRP Hooking

• System calls used to send commands

• NtDeviceIoControlFile

• NtWriteFile

• Etc.

• Requests are converted to I/O Request Packets

(IRPs)

• IRPs are delivered to lower level drivers

12

I/O Manager and IRP Hooking

• Every driver is represented by a DRIVER_OBJECT

• IRPs are handled by a set of 28 function pointers

within the DRIVER_OBJECT

• A rootkit can hook one of these function pointers to

gain control

13

Interrupt Descriptor Table Hooks

• Each CPU has an IDT

• IDT contains pointers to Interrupt Service Routines

(ISRs)

• Uses for IDT hooks

• Take over the virtual memory manager

• Single step the processor

• Intercept keystrokes

14

Advanced Process Hiding

15

• DKOM Uses

• To hide a process

• Locate the EPROCESS block of the process to hide

• Change the process behind it to point to the process
after the process you are hiding

• Change the process after it to point to the process
before the one you are trying to hide

• Add Privileges to Tokens

• Add Groups to Tokens

• Manipulate the Token to Fool the Windows Event Viewer

• Hide Ports

Hiding Processes - Review

16

Hiding Processes - Windows

KPRCB

*CurrentThread

 *NextThread

 *IdleThread

ETHREAD

KTHREAD

ApcState

EPROCESS

KPROCESS

LIST_ENTRY {

 FLINK

BLINK }

EPROCESS

KPROCESS

LIST_ENTRY {

 FLINK

BLINK }

EPROCESS

KPROCESS

LIST_ENTRY {

 FLINK

BLINK }

17

FUTo – Hiding From the Tables

• FUTo

• Uninformed Journal Vol. 3
(http://www.uninformed.org)

• New version of FU hence the ‘To’

• Hides from IceSword and Blacklight

• Option –pngh bypasses as of (06/26/06):

• Blacklight (F-Secure)

• AntiRootkit (BitDefender)

• Removes itself from the PspCidTable

18

PspCidTable (PspPidTable)

• PspCidTable

• Job of PspCidTable is to keep track of all the processes and

threads

• PspCidTable’s indexes are the PIDs of processes.

• Returns the address of the EPROCESS of a process at the

location corresponding to the PID.

• Problems:

• Relying on a single data structure is not a very robust

• By altering one data structure much of the OS has no idea the

hidden process exists

19

Kernel Structures: The Tables
• Handle Table:

• Handles are an index into the Handle Table for a
particular object

• Objects represent processes, threads, tokens,
events, ports, etc.

• The Object Manager must do the translation from a
handle to an object

• The Object Manager consults the Security
Reference Monitor to determine access to the
object

• Every process has its own handle table to keep
track of the handles it owns

20

Kernel Structures: Handle Tables
lkd> dt nt!_HANDLE_TABLE

 +0x000 TableCode : Uint4B

+0x004 QuotaProcess : Ptr32 _EPROCESS

+0x008 UniqueProcessId : Ptr32 Void

 +0x00c HandleTableLock : [4] _EX_PUSH_LOCK

+0x01c HandleTableList : _LIST_ENTRY

 +0x024 HandleContentionEvent : _EX_PUSH_LOCK

 +0x028 DebugInfo : Ptr32 _HANDLE_TRACE_DEBUG_INFO

 +0x02c ExtraInfoPages : Int4B

 +0x030 FirstFree : Uint4B

 +0x034 LastFree : Uint4B

 +0x038 NextHandleNeedingPool: Uint4B

 +0x03c HandleCount : Int4B

+0x040 Flags : Uint4B

 +0x040 StrictFIFO : Pos 0, 1 Bit

21

Handle Table Translation

test.exe ProcessId 152

{

HANDLE hProcess;

hProcess = OpenProcess(PROCESS_ALL_ACCESS, 0,
132);

if(hProcess == INVALID_HANDLE)
return 0;

TerminateProcess(hProcess);

}

ZwTerminateProcess(hProcess);

NtTerminateProcess:
PVOID obj =

TranslateHandleToObject(hProcess);

hProcess = 0x03

0 1 2 3 80 81 82 83 84

Object:

ObjectType = OBJ_PROCESS

Object = 0x8014231

0 100 152

TranslateHandleToObject
Process = PspCidTable[PsGetCurrentProcessById()];

if(Process == NULL) return 0;

return Process->ObjectTable[hProcess];

22

ZwTerminateProcess(hProcess);

NtTerminateProcess:
PVOID obj =

TranslateHandleToObject(hProcess);

hProcess = 0x03

0 1 2 3 80 81 82 83 84

Object:

ObjectType = OBJ_PROCESS

Object = 0x8014231

0 100 152

TranslateHandleToObject

Process = PspCidTable[PsGetCurrentProcessById()];

if(Process == NULL) return 0;

return Process->ObjectTable[hProcess];

test.exe ProcessId 152

{

HANDLE hProcess;

hProcess = OpenProcess(PROCESS_ALL_ACCESS, 0,

132);

if(hProcess == INVALID_HANDLE)
return 0;

TerminateProcess(hProcess);

}

Handle Table Translation

23

Detecting Processes

• Blacklight Beta

• Released in March 2005

• Good hidden process and file detection

• IceSword 1.12

• Robust tool offering:

• SSDT Hook Detection

• Hidden File and Registry Detection

• Hidden Process Detection

• Hidden Ports and socket communication Detection

• Common flaw

• Both applications rely upon the PspCidTable for detection

24

Detecting Hidden Processes

PID Bruteforce

• Blacklight

• Bruteforces PIDs 0x0 - 0x4E1C

• Calls OpenThread on each PID

• If Success store valid PID

• Else Continue Loop

• Finished looping, take list of known PIDs and compare it

to list generated by calling CreateToolhelp32Snapshot

• Any differences are hidden processes

• Called Cross-View method or Difference Based Method

25

RAIDE

26

RAIDE

• What is RAIDE?

• What makes RAIDE different than Blacklight, RKDetector,

Rootkit Revealer, VICE, SVV, SDTRestore, AntiRootkit?

• What doesn’t RAIDE do?

27

What is RAIDE
• RAIDE is a complete toolkit offering:

• Hidden Process Detection (Blacklight, AntiRootkit, Others)

• Hook Detection (SDTRestore, SVV, VICE)

• Hook Restoration (SDTRestore, SVV)

• IDT Detection

• Memory Subversion Detection

• Hidden Process Features

• Relink processes to make it visible

• Close Hidden Processes

• Method Detection

• Hidden Process Method Detection – Example hook, DKOM, etc.

• Hook Detection Method

28

What Makes RAIDE Different?

• RAIDE combines most existing tools

• RAIDE detects Memory Subversion

• RAIDE gives the user more information about

hidden processes and Hooks

• RAIDE does not use IOCTL’s to communicate

• RAIDE identifies NDIS hooks

• RAIDE can restore non-exported ntoskrnl functions

29

What Doesn’t RAIDE Do?

• RAIDE does not detect hidden files, folders, or

registry keys

• RAIDE does not restore Driver IRP hooks

• RAIDE does not restore IDT hooks (future maybe?)

• RAIDE does not prevent a rootkit from loading

• RAIDE is not a substitute for common sense

30

RAIDE Communication

• RAIDE communication designed to thwart Crappy And Stupid
Application Specific Attacks (CASASA)

• RAIDE uses Shared Memory segments to pass information
kernel land user land

• Shared Memory contains only encrypted data

• Communication uses randomly named events for signaling

• Uses randomly generated process names

• RAIDE spawns a user process from a driver to do a
Difference Based or Cross-View comparison

• The spawned process looks like any other process
spawned from userland.

31

Hidden Process Detection

• Goal for Process Detection:

• Signature that can not be zeroed out

• Signature that is unique

• Signature must not have false positives

32

Hidden Process Detection
• Signature:

• Locate pointers to “ServiceTable”

• ServiceTable = nt!KeServiceDescriptorTableShadow

• ServiceTable = nt!KeServiceDescriptorTable

• Contained in all ETHREAD

• Hidden Process:

• Spawn a process with random name

• Spawned process generates process list

• sends processes list visible to RAIDE

• RAIDE compares the two lists finding the differences

• hidden processes

33

Hidden Process Method Detection

• To detect hidden process methods, we need to know
the two methods most commonly used.

• DKOM

• PspCidTable

• If the process is not visible by walking
ActiveProcessList in the EPROCESS block then it
was hidden using the DKOM method.

• However for it to be hidden with the DKOM method
it has to be visible in the PspCidTable, so RAIDE
will walk that as well.

• If it is hidden in both it uses the FUTo method.

34

Shadow Walker Detection:

Illuminating the Shadows

• Shadow Walker relies on IDT hook

• Check IDT 0x0e for a hook

• SW could modify itself to hide the IDT hook with an

inline hook

• Other detection schemes out there

• Remapping Memory

• By remapping, we mean remapping a given physical

frame to a new virtual address (i.e. like the shared

memory concept).

35

Forensics

• Hook Restoration

• Relinking Processes

• Dumping Processes

36

Hook Restoration

• If an SSDT entry overwrite hook is detected

• Open ntoskrnl

• Obtain KeServiceDescriptorTable from file on disk

• Obtain original address for hooked index

• Recalculate address

• “re-hook” SSDT index with original address

37

Hook Restoration

• If it is an inline hook:

• Open ntoskrnl on disk

• Obtain original function address

• Read first few instructions

• Restore first few instructions

• Can restore as many instructions as needed

38

Relinking Processes

• DKOM is common hiding method

• DKOM relies on unlinking the EPROCESS link pointers

• Restore link pointers by passing the System EPROCESS

and the hidden EPROCESS to InsertTailList

• Allows user to see process

39

Dumping Process

• Dumping Process

• Allows Security Analysts to reverse the executable

or system file and see what it was doing.

• Does not matter if the file is originally hidden on the

HD.

• Dump file is renamed and put in the working

directory.

• Dumping lets analysts bypass any packer

protection.

40

Thanks

• Peter: bugcheck, xbud, thief, skape, pedram, greg h,

nologin/research’ers, f-secure labs.

• Jamie: Lil’ L, lonerancher, Barns, Greg, and

Bugcheck

41

DEMO

42

Questions?

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

